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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Crystal structure and melting in a cell model 
I. Solvable lattices and isomorphisms 

D. J. GATESi 
Mathematics Department, Imperial College, London SW7, England 
MS. receiced 30th December 1970 

Abstract. The free energy and crystal structure of some particular cases of a 
cell model of melting are obtained. These include (i) a class of one-dimensional 
cases with interactions extending to many neighbouring cells, (ii) the plane 
hexagonal, bcc and triangular lattices with nearest-neighbour interactions, 
(iii) a case of the plane, square lattice with first- and second-neighbour 
(diagonal) interactions, and others. The solutions for the simple cubic lattices 
in all dimensions were obtained in a previous paper. I t  is shown that some of 
the 2, 3, etc dimensional cases are closely related (‘isomorphic’) to one-dimen- 
sional cases. The detailed thermodynamics is considered in paper 11. 

1. Introduction 
This is the first of two papers in which we consider the follou ing questions about 

crystals and the ways in which they melt: (i) What is the relation between particle 
interactions and the resulting crystal structure? (ii) What is the relation between the 
structure of crystals and the nature of their melting transitions? (iii) What is the 
nature of metastable states in melting transitions? T o  study them we use the ‘cell’ 
model recently introduced by the author (Gates 1971, A n  Exacti’y Solvable Cell 
iWodel with a ,Welting Transition, to be referred to as ESCM). 

At present very little is known about any of the above questions. Question (ii) 
was considered long ago bp Landau (1937) (Landau and Lifshitz 1959). However, he 
concluded on the basis of a thermodynamic argument that a melting transition could 
not be of second order, which is contradicted by the results of ESChI, and of Gaunt 
and Fisher (1965) on the hard-squares lattice gas. This latter and related work 
represents our best answers to these questions, and is discussed further in paper 11. 
Very recently work has begun on the general formulation of crystal properties in the 
framework of statistical mechanics (Ruelle 1969), but this has not yet provided 
answers to the three questions. The present paper deals only with the first of these; 
questions (ii) and (iii) are dealt with in paper 11. 

I t  was shown in ESCM that the special case of the cell model with repulsive, 
nearest-neighbour interactions in a cubic lattice (of any number of dimensions, 
including 1) gives rise to a second-order melting transition. The crystal phase has a 
local density with two values p +  and p -  arranged in a sodium chloride pattern (see 
figure l(a)). Some other lattices give rise to exactly the same thermodynamic be- 
haviour, for example, the plane honeycomb lattice and the bcc lattice, each with 
nearest-neighbour, repulsive interactions (figure 1(b) and (c)). The  reason for this 
similarity is that in each case one can arrange the 2 local densities pi- and p -  on the 
lattice in such a way that each bond has a p +  at one end and a p -  at the other (see 
figure 1). We shall not prove here that this results in the same behaviour of the 
systems, since the analysis is essentially that given in ESCM. 
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718 D. J .  Gates 

On other types of lattice, this arrangement of p +  and p-  is not possible: for 
example, on the plane triangular lattice. The simplest structure one can imagine on 
this lattice is that shown in figure 2(a), where the local density has three values: 
pl, pz and p 3  (not necessarily all different). In  this crystal structure, each triangle of 
the lattice has a different density at each of its corners. We will show ( 9  4) that this is 
in fact the crystal structure dictated by the model, and that the melting transition is, 

t @- ; \ I  '+ I \  I +  

- ' /' I /- - - - - -  - 

t 
(0) (b ) (C) 

Figure 1,  The arrangement of the local densities p- and p - for the cell model, 
with nearest-neighbour repulsive interactions on (a) the +dimensional cubic 
lattice (v = 2 in the case shown), (b)  a plane honeycomb lattice, and (c) the bcc 

lattice. 

3 I 3 

(0.1 ( b  1 
Figure 2. The arrangement of the local density values pl,  pz and p 3  for the cell 
model on (a) the plane triangular lattice with first-neighbour interactions, and 
(b) the one-dimensional lattice with suitable second-neighbour interactions ( 3), 

unlike the previous cases, of the first order (paper 11). Exactly the same behaviour is 
found to occur in a one-dimensional case of the model with second-neighbour 
interactions of suitable magnitude (figure 2(b)).  

Other cases we consider ( 4  4) are the simple cubic lattices (of any number of 
dimensions) with both nearest-neighbour and diagonal interactions. For interactions 
of suitable magnitude these cases can be dealt with, yielding melting transitions of 
the first order. Again these systems are related to a class of one-dimensional systems, 
Our basic results ( $ 3 )  are the solution of the model for this class of one-dimensional 
systems, and ( 4  4) for a related class of two, three (or more) dimensional systems. 
These results show how different interaction potentials influence the crystal structure 
and therefore provide some answers to question (i) at the beginning of this section, 

2. The cell model and its basic properties 
The model was defined and discussed in detail in ESCM, so we shall give only an 

outline of it here. In  the model, particles are confined to congruent, similarly oriented, 
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v-dimensional ‘cells’ of volume w which are centred on the points of a u-dimensional 
lattice L(y)  (of any desired type) with nearest-neighbour distance l/y. The particles 
can move freely from cell to cell (to make this physically plausible one can imagine 
very fine tubes of negligible volume connecting the cells) ; and each particle interacts 
with other particles, both in the same cell and in other cells, via the two-body potential 

z ( r ,  y ,  W )  = q ( r )  + w - l K ( y r )  (2.1) 
where q(r)  is called the ‘short range’ or ‘reference’ potential and w-lK(yr) the ‘long- 
range’ potential. The functions q and K are assumed to satisfy the stability and 
tempering conditions (see equations (2.14)-(2.18) of ESCM). 

We consider the free energy density (per unit volume) Z(p, T,  y, U) defined in 
the usual way (see ESCM), for a system of such particles with average density p and 
temperature T ,  and evaluate its limit 

a(p, T )  = lim lim Z(p, T ,  y ,  U). 
w+a Y+O 

This limiting free-energy density a(p, T )  describes a system in which the distance 
l / y  between the cells and the volume w of each cell are both very large. Since the 
limit y -+ 0 is taken first, the separation of the cells is much larger than their dimen- 
sions, that is 

y-1 % w11v. (2.3) 

The range of the potential w - l K ( y r  also becomes infinite as y +0,  so that ‘as 
seen by the cells’ this potential has a fixed range. The  need for the factor w - l  was 
explained in ESCM. 

The  basic result for the model is the following variational principle. Let %(p) 
be the set of functions n(y)  defined for y E L(1) (Le. on the lattice with nearest- 
neighbour distance unity), which are (i) non-negative, (ii) periodic in y (with un- 
specified period), and (iii) have space average p, that is 

1 

where r (n)  c L(1) is the unit cell of n,  and 
G(n, T) be defined for any n~%?(p)  by 

is the number of points in I?. Let 

1 
G(n, T )  = - 2 bOMY), T ) + M Y )  t: 4Y”Y-Y’)l ( 2 . 5 )  

Ir(n) I y e r ( n )  Y’EL(1)  

Rhere ao(p, T )  is the free energy density of the continuum system with two-body 
potential q(r). Then the variational principle is (see theorem 1 of ESCM) 

a(p, T )  = inf G(n, T ) .  
I t  E%?(Oi) 

The result (2.6) simply states that to find a(p, T) one minimizes the free energy 
functional G(n, T )  over all possible local density functions n(y). This is similar to 
the well known thermodynamic principle of ‘minimizing the free energy’. One must 
use an infimum in (2.6) rather than a minimum, because one may need to make r(n)  
arbitrarily large to minimize G, which would mean that the minimum could not be 
attained for any n E ‘%(p). (This happens for two-phase states.) 
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If suitable restrictions are made on K (for example, if K < 0), this result reduces 
to the result of Lebowitz and Penrose (see theorem 2 of ESCM) 

a(p, T )  = CE{aO(p, T)++.p2j 
where 

7. = K(s)  
S S L ( 1 )  

(2.7) 

and CE, called the ‘coin-ex-envelope’, means ‘take the maximal convex function of p 
which does not exceed the bracket { }’. Equation (2 .7)  represents a fluid system, and 
yields a generalization of the van der Waals equation. The convex-envelope is 
equivalent to the ICIaxwell construction for the pressure, and describes the coexistence 
region of a first-order, gas-liquid transition. 

If different restrictions are placed on K ,  the system has crystalline states. In  
particular, if the lattice is v-dimensional cubic, and K extends to nearest neighbours, 
then instead of (2 .7 )  we obtain the equation of state (4.9) of ESCM and the crystal 
structure shown in figure l ( a ) .  

3. Solution for a class of one-dimensional cases 
In  ESCRI it was mentioned that the one-dimensional cell model with many- 

neighbour interactions was not easy to deal with. The nearest-neighbour solution given 
there relied on the fact that the crystal structure is always of the form p + p - p + p  -...; 
that is, the density function ~z*(y) which minimizes G(n, T )  equals p+ for J’ odd and 
p -  for y even. If there are also second-neighbour interactions, that is, K(2) f 0 and 
K(s) = 0 for s > 2, the situation is more complicated. For example, one finds that, 
if K(2) < 0 and K( 1) > 0, then the crystal structure is again of the form p+ p - p+ p - . . . , 
but if K( 1) = 0 and K(2) > 0, the crystal structure is p+ p - p - p - p + p+p - ... (i.e. 
period 4) while if K(1) = 21<(2) > 0, the crystal structure is p l p 2 p 3 p l p a p 3  ... (i.e. 

5 

Figure 3. The long-range potential (3.1) for the solyable one-dimensional 
cases of the model. 

period 3 ) .  We shall not prove the first two of these results since their proof is essen- 
tially the same as that given in ESCIL’I. The third result has however an interesting 
generalization which we now consider. We note in passing that the general solution 
of all K( 1) and K(2) seems a difficult but interesting problem because of all the different 
crystal structures and melting transitions which would seem to be possible. 
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The generalization we shall consider is a one-dimensional system with 

s = o  

s = 1,2, ... L 
s 2 L  

which is illustrated in figure 3. Here b is positive, L is a positive integer and KO 
may be positive or negative. We define for any function f ( p ) ,  the 'L-point envelope' 

1 L  
ELf(P) by 

( 3 . 2 )  

The special case E2f is identical to the mid-point envelope MEf used in ESCM. 
Then the result we obtain is: 

Theorem. For the one-dimensional cell model with potential (3 ,1) ,  the f iee energy is 

a(p, T )  = CEIEL(ao(p, T ) + i ( y . -  bL2)p2}+3bL2p2]. (3.3) 
For values of p and T where the bracket [ ] coincides with its conaex enaelope, one can 
also write 

Here n*(ji, p ,  T )  minimizes G(n, T )  for ntzg(p),  and has period L, that is  
a(p,  T )  = G(n*, T ) .  

n* (y+L,p ,  T )  = n y y , p ,  T ) .  

(3 * 4 )  

( 3  -5) 
When the bracket [ ] d;ffers from its convex enaelope the system has two phases both with 
a density of the form (3.5). 

The case L = 2 of this theorem is just a particular case of the result (theorem 3 )  
of ESCRI, that is, nearest-neighbour interactions in one dimension. Before proving 
the general result we first give an heuristic argument, 

Consider first the nearest-neighbour case. The model can be represented by the 
chain in figure 4(a) ,  where the vertices are cells and the bonds are interactions of 

+ - t - t 
A A A w w .I * (0) 

t S  -- t't -- t t  
-4 U- H D-db ( b )  

Figure 4. Illustration of the Theorem for first-neighbour interactions. 

strength b. If we follow the argument of ESCM we see that equation (4.21) of that 
paper corresponds to splitting the chain into separate links as shown in figure 4(b) 
so that each vertex is halved, and then minimizing the free energy of each link. Since 
each link is identical, this produces densities p +  and p -  at opposite ends of each link, 
and these links can be fitted together to give the density distribution p - p - p + p  -... 
shown in figure 4(a).  

Now consider the L = 3 case. Here we have K(l) = 2b and K(2) = b, so that 
the system can be represented by the network shown in figure 5(a),  where again each 
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bond represents an interactiop of strength b. It turns out (as we shall subsequently 
prove) that a step in the treatment of this system also corresponds to breaking the 
network into parts, in this case triangles whose sides 'have' strength b. The free 
energy of each triangle can then be minimized separately and, since all triangles have 

I 3 2 I 

(0) 

2 I 3 

Figure 5 ,  Illustration of the Theorem for second-neighbour interactions, 

identical bonds, each has the same density distribution p1p2p3. These can be arranged 
on each triangle so that the vertices match and the resulting network has period 3 as 
shown in figure 5 ( b ) ,  

The L = 4 case can be dealt with in the same way. This time we obtain a network 
which can be split up into equilateral tetrahedra, resulting in period 4. This should 
give the reader a rough idea of the reason for choosing the potential (3.1), and help 
with the understanding of the general proof which we now give. I t  may be found 
helpful to write out the proof for the cases L = 2 and 3. 

Following the method of ESCM we first obtain an upper bound on a(p, T ) .  For 
the potential (3.1), the equation (2.5) for G(n) (omitting T-dependence from the 
notation) reduces to 

L - 1  

From the variational principle (2.6) it follows that 

Choosing 

and 

we obtain from (3.6) and (3.7) 

a(p) < 

a(p) < G(n') for any n'~%'(p).  (3.7) 

n ' (y )  = py for 1 < y < L (3.8) 

n ' (y+L)  = .'(y) 

1 
{ao(pl) ++K0pl2 +- . . . + ao(pL) +$KopL2] 

b 
+ 7 { ( L -  ')(plf2+p2p3 f * * * f L - l f ' L  + P L p 1 )  + ( I J - 2 )  

(pip3 +f$4 + +f L -  if1 f p ~ p 2 )  + ( L  - 3) ( .  - 
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The interaction terms in this sum are obtained by considering all the pairs in the 
periodic series p l p 2  ... p L p l p z  ..., and giving the appropriate interaction to each, that 
is, ( L -  1)b for nearest-neighbours etc. The terms in the bracket { ) have the sum 

L x (sum of all distinct pairs chosen from p1 ... p L ) .  (3.10) 

Each pair appears only once in the bracket ( ). This result is most easily understood 
by going through the cases L = 2, 3, 4, etc. The expression (3.10) reduces to 

(3.11) 

Combining (3.9) and (3.11) gives 

l L  
a(p) < -- 2 {a"pt) + *K,p,2 - ibLpt2)  ++bL2p2. (3.12) 

Since this holds for all p1 ,.. p L  with average p we can minimize the right side, which 
from (3.2) gives 

a(p) < EL(aO(p) +&(KO - b L ) p 2 )  ++bL2p2. (3.13) 

From (2.8) and (3.1) we have 
o! = Ko+bL2-bL. (3.14) 

L 1 = 1  

illso, since a ( p )  is convex (ESCM) we obtain 

a(p) < CEIEL(ao(p) ++(R - bL2)p2} + &bL2p2]. (3.15) 

T o  obtain a lower bound on a(p), we use in (3.6) the fact that n(y)  has period T(iz), 
This is half the proof of the theorem. 

which gives (using F for r(n))  

[ao{n(y+s))++Kon(y+s)2] 

1 - b(sum of all products n(y + s)n(y + s') for s # s' and 0 < s, s' < L - 1) 

[ao{n(y+s)}-!-~(Ko-6L)n(y+s)2]+b 

We now put (cf ESCM, equation (4.23)) 

*(P> = a"f) ++(KO - bL)P' (3.17) 

and note from (3.2) that 

(3.18) 

(3.19) 
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where 

t ( p )  E E%&) + 4bL2p” 

But the definition of CE implies 

Hence, we have, using the convexity of ((p) 

= <(p) for a l l  n&?(p) 

(3.20) 

(3.21) 

where the equality follows from (3.1). Since (3.21) holds for all n it follows that 
(3 22 )  

which, together with (2.6) and (3.15), proves (3.3). The statements (3.4 and 3.5) 
follow from the arguments leading to (3.15). This completes the proof of the theorem. 

The theorem can be generalized to v dimensions on a cubic lattice (Zu) by allowing 
interactions of the form (3.1) along each of the v lattice directions. The result is 
essentially the same as ( 3 . 3 )  and the crystal structure is of the form shown in figure 6 

Figure 6. Arrangement of the densities p l ,  p z  and p3 in the two-dimensional, 
L = 3 generalization of the Theorem, 

(for L = 3 and v = 2). However, this is a rather artificial generalization since it does 
not contain any diagonal interactions. 

4. Isomorphisms between different cases of the model 
The cases of the model with nearest-neighbour interactions on a v-dimensional 

cubic lattice all have the same free energy (equation (4.9) of ESCM) and related 
crystal structures (i.e. p +  and p- at the ends of each bond). We shall call such cases 
‘isomorphic’. These cubic lattices cases are also isomorphic, in the same sense, 



Crystal structure and melting in a cell model-I 725 

to other lattices like the plane-honeycomb and the bcc lattices, as mentioned in the 
introduction. I n  the present section we consider further such isomorphisms. 

We show firstly that the one-dimensional, L = 3 case of the previous section is 
isomorphic to the case of a triangular lattice (figure 2(a)) in which all nearest-neighbour 
bonds are equal. In  the latter case we have 

s = o  

K(s) = s = e,, e ,  or e3 (4.1) 
otherwise 

where the e ,  are the unit translation vectors of the triangular lattice. Choosing an 
n’(y) which represents the distribution of densities p l ,  p2 and p3 as shown in figure 2, 
and using (3.7) gives 

3 

G 5 2 (ao ( f , )+BK,p i2 )+K l ( f , p2+ f2P3+P3P1)  
1=1 
3 

= Q 2 (ao(pJ + (&KO - #K1)p,2) + 3K$. (4.2) 
1 = 1  

hfinimizing the right side gives 

a(p) < CE[E3(ao(p)  + &(3K0 - x)p2)  + $ ( x  - KO)p2] (4.3) 

where GC = KO + 6K1. The right side is also a lower bound on a(p) as can easily be 
shown by the methods of the previous section (and of ESCM). Hence (4.3) is an 
equality. If we define here b = ~ ( G c - K , ) ,  then (4.3) is identical to the L = 3 case 
of (3.3)) that is, the two systems are isomorphic. The basic reason for this isomorphism 
is that both lattices can be broken down into a set of equilateral triangles. We shall 
investigate the common thermodynamics of the two systems in paper 11. 

Next we point out that the one-dimensional, L = 4 case of the previous section 
is isomorphic to the case of a plane square lattice with nearest-neighbour and diagonal 
bonds such that 

K ( 0 ,  1) = K(1,O) = 2b 

K(1,l) = b 
(4.4) 

that is, there are two bonds of strength b between nearest neighbours and one such bond 
on each diagonal (see figure 7 ) .  By the previous arguments, the free energy of this 

Figure 7. The arrangement of bonds and local densities p l ,  p a ,  p 3  and p 4  on 
the solvable square lattice with first- and second-neighbour interactions. 
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system is given by 

a(p) = CE[E4{ao(p) +($KO - $a)p2] + $ ( x  - K0)p2] (4.5) 
and the crystal density distribution has the form shown in figure 7 .  If we define here 
b &(a-.Ko) then(4.5) is identical to the L = 4 case of (3.3); that is, the two systems 
are isomorphic. Here, the basic reason for the isomorphism is that both lattices can 
be broken down into a set of equilateral tetrahedra (see figure 7). 

The  L = 8 case of the previous section turns out, in the same way, to be iso- 
morphic to the cubic lattice case with edge, face-diagonal and body-diagonal bonds 
such that 

K(1,0, 0) = 46 

and 
K(1, I ,  0) = 2b 

K(1, 1, 1) = b. 

I n  general, the L = 2” case of the previous section is isomorphic to the v-dimensional 
cubic lattice with the bonds 

K(1, 0, O , O ,  ... 0 )  = 2”-’b 
K(1, 1 , 0 , @ ,  ... 0) = 2”-% 

and so on, until 
K(1, 1, 1, 1, ... 1) = b. 

(4.7) 

We shall not consider the proof of this here since it is a straightforward generaliza- 
tion of the previous proofs. 

A problem which we have not solved is to find lattices (if any) which are iso- 
morphic to the L = 5, 6, 7, 9, etc, cases of the one-dimensional model. The sequence 
of lattices we have found so far is a rather curious one. I t  might therefore be interesting 
to  study the whole sequence from a purely abstract, topological point of view. 

5. Confirmation of a conjecture 
It was shown by Gates and Penrose (19fOb) that the continuous mean-field model 

has crystal states under certain conditions. I n  $ 6  of this reference it was conjecmred 
that the one-dimensional system should have a periodic crystal state with period l/po, 
approximately, if the Fourier transform I?@) of the long-range potential has a pro- 
nounced minimum at p,. We now show that this conjecture is confirmed for the 
previous one-dimensional cases of the cell model. 

For these cases we have from (3.1) 

R(p) 5 2 ~(s)exp(2.irips) 
s = 0, * 1. i. a . . .  

L-1 

= Ko+2b 2 (L-s )cos (~T~s )  
s = 1  

Hence R(p) has minima KO - bL  at 

1 2 L-1 L + l  2 L - l 2 L + l  P = - -  -- 
L’ L’ “‘ L ’ I, L ’ L  

, ... a . .  . 
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The  first minimum is p ,  = 1/L, so that l ips  = L. This is just the period of the 
crystal state (theorem), so that the conjecture is confirmed. 

I n  view of the results of 9 3, one might hope that the potential 

K(s) = ( L - s ) b  s < L  

0 s 2 L (any real, positive L) (5  -2) 
for the continuum system of Gates and Penrose (1970a) might result in a crystal of 
period L. However, we find that 

am 

K(p) J ds K(s)exp(2xips) 
- - %  

It follows (see equation (1.7) of Gates and Penrose 1970b) that the free energy is just 
ao((p) + @L2p2, so that the system has only a fluid state. Roughly speaking, the reason 
for this is that the continuum case is a limit of the cell case, and the freezing transition 
occurs at infinite density (see paper I1 9 3). 

6. Discussion 
The cell model has been solved for a certain class of lattice and interactions. 

This is a very special class whose members have the property that their crystal states 
have a fixed periodicity. It would be interesting to try and find all such special cases, 
or at least to characterize them in a general way. 

It is perhaps surprising that such a class does exist in the model, and one might 
ask whether other models also have such classes. To study this question, it might 
be fruitful to consider a model which resembles the cell model somewhat, namely the 
classical Heisenberg antiferromagnet. 

Another question which arises is whether a similar class of interactions can be 
found for the continuum mean-field model of melting (Gates and Penrose 1970a). 
This model was shown to have crystal states and melting transitions, but in no case 
has the crystal structure been found, nor the nature of any melting transition been 
determined. 
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